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Abstract

A new nondestructive damage evaluation method is introduced. The method is able to detect, locate, and
size structural damage in a plate-like structure using measured modal parameters of a structure. The
solution procedure consists of two steps: First, the method requires constructing a set of flexural damage
index equations that represent a rigorous mechanical relationship between damage and curvature of modal
flexibility. Second, a pseudo-inverse solution to the resulting system of the over-determined equation
nondestructively evaluates damage in a plate-like structure. This study confirms that there is a strong linear
relationship between the curvature of flexibility of a structure and flexural damage. In consequence, the
proposed method introduces a way to avoid the singularity problem and mode selection problem of the
mode shape curvature method and damage index method.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Due to a variety of hostile environments, the unexpected structural deterioration in existing
structures is unavoidable. In order to monitor periodically the load carrying capacity of the
structure, many nondestructive damage evaluation techniques have been proposed over last three
decades. Among the vibration-based damage detection methods, the Mode Shape Curvature
(MSC) method by Pandey et al. [1] and the Damage Index (DI) method by Stubbs et al. [2] have
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

a the 12� 1 vector for a plate, contain-
ing the coefficient of the polynomial
state

be;f the flexural damage index of the
(e, f)th element of a plate

b the n� 1 vector containing be;f

C the pseudo-inverse of K
Z non-dimensional variable of a plate

in the y direction
yxðx; ZÞ at location ðx; ZÞ; rotational dof of a

plate in the x direction
yyðx; ZÞ at location ðx; ZÞ; rotational dof of a

plate in the y direction
ye;f

xi at the ith node, the rotational dof
of the (e, f)th element in the x

direction
ye;f

yi at the ith node, the rotational dof of
the (e, f)th element in the y direction

ki;j
x at the (i, j)th node, the curvature of a

plate in the x direction
ki;j

y at the (i, j)th node, the curvature of a
plate in the y direction

jn the m � 1 curvature vector of a
damaged structure

K the m � n matrix denoting curvature
of undamaged structure (m4n)

li the ith eigenvalue ð¼ o2
i Þ

n the Poisson’s ratio
x non-dimensional variable of a plate

in the x direction
si the ith singular value of K
r the density of a structure
ti the n � 1 vector denoting the ith

basis of KTK
ui the ith mode shape vector
jji the jth component of the ith mode

shape vector (ui)
jiðx; yÞ the function form of the ith mode

shape
vðx; yÞ the 3 � 1 vector denoting curvature

of a plate at location (x,y)
wi the ith mass normalized mode shape

vector
cji the jth component of wi

oi the ith natural frequency (rad/s)
X the r� r diagonal matrix denoting

singular values of KTK
a the length of a rectangular plate

element in the x direction
A the cross-sectional area of a plate
b the length of a rectangular plate

element in the y direction
Bðx; ZÞ the 12 � 3 matrix denoting curvature

of a plate at the location ðx; ZÞ
C the 12� 12 matrix for a plate denoting

linear relationship between a and we

D a coefficient of material properties of
a plate

D1 the 3� 3 matrix denoting material
properties of a plate

E the Young’s modulus
e the m � 1 error vector
E mean squared error
EIe;f the flexural rigidity of the (e,f)th

plate element
F the 8 � 8 element flexibility matrix of

the rotational dof ð¼ S�1
Þ

G the 8� 4 matrix denoting the rela-
tionship between we

r and we
t

h the thickness of a plate
H the 8� 12 plate element stiffness

matrix of all the degrees of freedom
I the sectional second moment of area
K the stiffness matrix
K�1 the flexibility matrix
mi the ith modal mass (mi ¼ uT

i Mui)
M the mass matrix
Mðx; yÞ the 3 � 1 three internal moment

vector per unit length at the location
(x,y)

Mi;j
x at the (i, j)th node, the internal

normal moments in the x direction
Mi;j

y at the (i, j)th node, the internal
normal moments in the y direction

Nðx; ZÞ the 12 � 1 interpolation vector at the
location ðx; ZÞ

pðx; ZÞ the 12� 1 polynomial state variable
vector at the location ðx; ZÞ

q the n � 1 vector denoting residual
between b0 and b
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R a 8 � 8 diagonal matrix
S the 8� 8 element stiffness matrix of

rotational dof
T the 8� 4 element stiffness matrix of

transverse dof
Y the n� r matrix denoting non-zero

basis of KTK
wk the kth modal flexibility vector
wðx; ZÞ the transverse dof of a plate at the

location ðx; ZÞ

we the 8 � 1 vector for a plate containing
primary nodal variables

wi;j at the (i, j)th node in global coordi-
nates, the transverse dof

we
r the 8 � 1 vector denoting the un-

measurable rotational dof
we

t the 4 � 1 vector denoting the measur-
able transverse dof
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drawn special attention. The reason for this particular concern is traced to the results of the
comparative full-scale damage detection study of Farrar and Jauregui [3]. The authors
investigated the performance of five damage detection algorithms in blind mode using
experimental data collected from a full-scale damage test. Based on the results, the authors
concluded that the MSC method and the DI method are distinguishable. Such a memorable
success of the MSC method and the DI method might be due to the sensitivity of curvature of
mode shape with respect to the given damage. Since modal strain energy of the DI method is a
function of curvature of mode shape, two methods basically utilize the measured curvature of
mode shapes to evaluate damage.

Pandey et al. [1] suggested that the amount of damage in a structure could be obtained from the
magnitude of changes in curvature of the mode shapes. In their numerical studies, the changes in
resonant frequencies, Modal Assurance Criterion (MAC), Co-ordinate Modal Assurance
(COMAC), displacement mode shapes did not indicate the presence of damage. Only changes in
mode shape curvatures indicated damage. The MSC method utilizes the flexural formula for an
Euler–Bernoulli beam and the curvature values are computed from the measured mode shape using
the central difference approximation. Since the MSC method directly utilizes response data related
to damage, no analytical model is required. This feature of the method renders the method
potentially fast and cost-effective. In consequence, the MSC method has a great potential for on-line
health monitoring of beam-like structures, since mode shapes can be extracted from the ambient
vibration response of the structure. However, the MSC method has at least three shortcomings:
first, the estimation results can be different if more than one mode is used [4]; second, in cases of a
uniform reduction in the global stiffness, the method cannot predict such damage [5]; and third, the
singularity problems near the inflection points of mode shapes are an obstacle to detecting damage
[6]. For the mode selection problem, the work of Wahab and Roeck [7] proposes a curvature
damage factor that is a linear summation of the difference in the curvature of mode shape for all
modes. However, the proposed curvature damage factor has no physical interpretation.

Stubbs et al. [2] proposed the Damage Index (DI) method to locate and estimate damage using
changes in the modal strain energy estimated from measured mode shapes. The method is based
on an assumption of the invariance of the sensitivity of fractional modal strain energy of a
potential damaged element during a small damage event. The feasibility and practicability of the
DI method are demonstrated through a full-scale bridge by Stubbs et al. [8]. The theory is later
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specialized for plates by Choi and Stubbs [9] and Cornwell et al. [10], frames by Stubbs et al. [11],
trusses by Duffey et al. [12], and cylindrical shells by Srinivasan and Kot [13]. Apparently, the
family of the DI method utilizing modal strain energy can be applied to any form of a structure in
principle. Comparing to the MSC method, the DI method further requires the numerical
integration of curvature of mode shape to obtain modal strain energy. This step might contribute
to reduce the measurement noise. However, the singularity problem near inflection points and the
mode selection problem still share with the MSC method.

The problem addressed in this study is to find changes in the stiffness of a structure given
measured changes in the modal parameters. The objective of this study is to introduce a new
technique that can detect, locate, and size damage for a selected class of structures. The proposed
method basically shares with the same idea with the MSC method and the DI method, and
possibly extends the efficiency, accuracy, and reliability of those methods by resolving the
previously described deficiencies such as the mode selection problem and the singularity problem
near inflection points of mode shape. One strategy taken in this study for the mode selection
problem might exploit the concept of modal flexibility because modal flexibility is a rational way
to combine the measured modes. In order to resolve the singularity problem, this study solves a
governing equation of a damage mechanism that represents a rigorous structural relationship
between changes in stiffness and changes in modal flexibility based on the fundamentals of
structural mechanics.

To achieve the objective, the following five steps are performed. First, a few required
assumptions and characteristics of modal flexibility are discussed. Second, the slope-deflection
equation of a plate-like structure is derived from modal flexibility. Third, using the two-
dimensional slop-deflection equation, a governing equation of damage mechanism, the so-called
flexural damage index equation, is derived. Fourth, a special solution technique to the derived
system of equation is presented. Finally, the numerical example is provided.
2. Theoritical background

2.1. Characteristics of modal flexibility

The global stiffness matrix (K) and flexibility matrix (K�1) of a structure can be described in
terms of natural frequencies and mode shapes [14] by

K ¼
Xr

i¼1

o2
i

mi

Muiu
T
i M (1)

and

K�1 ¼
Xr

i¼1

1

mio2
i

uiu
T
i ; (2)

where the terms oi; ui; and mi are the ith natural frequency, mode shape vector, and modal mass,
respectively. The scalar, r, denotes the number of mode considered. The matrix M denotes the
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global mass matrix of a structure. It can be seen that the dynamically measured flexibility matrix
has at least the following five features:

First, dominance of the low frequency: the ith modal contribution factor, 1=ðmio2
i Þ; of the

flexibility matrix rapidly decreases as the frequency increases. However, the ith contribution
factor, o2

i =mi; of the stiffness matrix increases as frequency increases. Thus, the flexibility matrix
can be accurately synthesized from a few of the lower frequencies and mode shapes even if the
stiffness matrix can be accurately synthesized from high frequency modes.

Second, uncoupling with the mass matrix: the ith modal contribution matrix, uiu
T
i ; of the

flexibility matrix is not coupled with the mass matrix unlike the modal contribution
matrix, Muiu

T
i M; of the stiffness matrix. Thus, the flexibility matrix is less sensitive to a local

change of mass although its overall magnitude is scaled by the ith modal contribution factor,
1=ðmio2

i Þ:
Third, independence of the probing degree of freedom: one of the more important features

is a relaxation of the number of degree of freedom (dof) required to measure the modal
flexibility. Since the flexibility matrix is an inverse of the stiffness matrix, each component of the
flexibility matrix is a fractional number. Its denominator is a characteristic equation that is a
function of the local structural rigidities. Thus, any local stiffness is detectable in any dof if the
flexibility matrix is directly used. However, the local stiffness in the global stiffness matrix is
located in a diagonal band without the characteristic equation in the case of a straight beam.
Hence, the ith local stiffness cannot be detected in the jth dof if the jth dof is not a neighbor
of the ith dof.

Fourth, linearity: the dynamically measured modal flexibility can be linearly decomposed into
bending flexibility, torsional flexibility, and axial flexibility corresponding to its bases. Thus, the
damage and boundary condition can be independently dealt with its characteristic mode. In
addition, the reciprocal theorem is still valid because of the symmetry.

Finally, transformation from dynamic domain to static domain: the modal flexibility can be
interpreted as a domain transformation from the dynamic domain to the static domain, since
dynamically measured modal flexibility represents a static deflection profile caused by a unit load.
This property is important in vibration-based nondestructive damage evaluation because a single
representative solution can be obtained by combining the results estimated from each mode.

The kth column of the flexibility matrix in Eq. (2) can be interpreted as a displacement
vector due to a unit load at the kth dof. The modal approximation of the kth column of the
flexibility matrix can be called the kth modal flexibility vector here. Note that the kth modal
flexibility vector can also be represented by a matrix form with respect to two-dimensional
coordinates (x and y). Hence, in the followings, the kth modal flexibility vector will be
equivalently called the (i, j)th modal flexibility matrix that is a displacement matrix caused by a
unit load at (i, j)th node.

Then the kth modal flexibility vector, denoted by wk; can be obtained from Eq. (2) as follows:

wk ¼
Xr

i¼1

jki

limi

ui; (3)

where the scalar, jki; is the kth component of the ith mode shape, and lið¼ o2
i Þ denotes the

eigenvalue of the ith mode.
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Since the relationship between the mass normalized mode shape for the ith mode, wi; and its
general form, ui; is ui ¼

ffiffiffiffiffi
mi

p
wi [15], the kth modal flexibility vector can also be expressed in terms

of mass normalized mode shapes:

wk ¼
Xr

i¼1

cki

li

wi: (4)

2.2. Modal mass approximation

If both input and output measurements are available, many modal analysis packages provide
the mass normalized mode shapes without absolute value of modal mass, because the identified
modal mass has no physical meaning except for scaling mode shapes. In a forced vibration test,
the kth modal flexibility vector can be obtained by Eq. (4) instead of the generalized form of
Eq. (3). If mode shapes and natural frequencies are estimated from output-only ambient response,
there is no way to find the modal mass because the residue of the transfer function cannot be
estimated. However, if we assume that the mass density of a structure has not changed during a
small damage event, the ith modal mass for a uniform thin plate can be obtained accurately by a
numerical integration of the following formula:

mi ¼

Z
A

rhjiji dA; (5)

where the terms, r; h, and A denote, respectively, the density, the thickness, and the area of the
plate. The function jiðx; y) denotes the ith mode shape. To approximate the ith modal mass, a
double integration is required. One of the easiest ways is to use the trapezoidal rule twice. First,
the discrete measurements of the ith mode shape can be interpolated with respect to the y direction
using the cubic Spline function. This step is necessary because the sensor spacing is typically coarse
in practice. Second, the interpolated mode shapes can be integrated with respect to the y direction
using the trapezoidal integration rule after squaring the interpolated mode shapes. Next, the same
procedures are repeated in the x direction. Third, the cubic Spline interpolation with respect to the
x direction for the resulting integrated values is performed. Finally, the trapezoidal integration
with respect to the x direction yields the ith approximate modal mass.

2.3. Small damage assumption

The small deflection theory assumes that the change in shape of a structure due to a force must
not affect the line of action of the applied loads [16]. Hence, the internal forces of a deformable
body caused by the applied loads can be obtained from initial configuration. As an extension of
such an assumption, one may assume that the additional change in shape of a structure due to a
small damage event under a given loading condition may also not affect the line of the action of
the applied loads. In other words, the effect of the additional change in shape on the line of the
action of the applied loads may be considered to be secondary. Based on such a consideration,
two assumptions will be made here. First, a small damage event, a priori, will have an insignificant
effect on the internal forces of a statically determinate linear structure. Second, it is also assumed
that the same is true in a statically indeterminate linear structure.
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2.4. Two-dimensional slope-deflection equation

Two-dimensional plate modes are often encountered for a structure in which length and width
are large compared to the thickness (e.g. the plate-like bridge). The objective of this section is to
derive the slope-deflection equation for a plate-like structure. Consider the isotropic thin plate
shown in Fig. 1. Assume that the static deflection profile, denoted by wðx; yÞ; due to a unit load at
the (i, j)th node, is accurately approximated at the discrete measurement position utilizing the kth
modal flexibility vector, wk; (i.e. the (i, j)th modal flexibility matrix) in Eq. (3) or Eq. (4).

The transverse deflection, wðx; yÞ; of the plate element ‘A’ is governed by the fourth-order
differential equation:

Dr4w ¼ f z; (6)

where

D ¼
Eh3

12ð1� n2Þ
and r4 ¼

q4

qx4
þ 2

q4

qx2qy2
þ

q4

qy4
:

The applied force, f z; will be zero except at the (i, j)th node. The terms, E, n; and h denote
Young’s modulus, the Poisson’s ratio, and thickness of the plate, respectively. The constitutive
laws related to internal moments (Mx; My; and Mxy), with a sign convention shown in Fig. 2, and
the respective curvatures are as follows:

Mðx; yÞ ¼ D1vðx; yÞ; (7)

where

D1 ¼ D

1 n 0

n 1 0

0 0
ð1� nÞ

2

2
664

3
775; (8)
(a) The kth modal flexibility vector of a plate 

1 

A 

k 

(b) Degrees of freedom of a plate element, ‘A’

4 

z, w 

x, ξ θx 

y,η 

θy 

3 

1 2 

a 

b 

Fig. 1. The kth modal flexibility vector of an engineering plate.
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Mxy

Mxy

fz 

x 

y 

dx 

dy

Mx 
My 

z 

Fig. 2. Sign convention of a differential element.
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wðx; yÞ ¼ �
q2w

qx2
�
q2w

qy2
�2

q2w

qxqy


 �T

: (9)

The 3� 1 vector, Mðx; yÞ ¼ ½Mx My Mxy 

T; denotes the internal moments per unit length.

The 3� 3 matrix, D1, denotes the material properties for the plate and the 3� 1 vector, vðx; yÞ;
denotes the curvature of the plate. For numerical convenience, the non-dimensional local
coordinate system shown in Fig. 1b will be used in the following discussion. There are three
degrees of freedom at each node. The transverse deflection normal to the middle surface of the
plate, wðx; yÞ; and the two rotational dof yx ¼ qw=qy and yy ¼ �qw=qx: The non-dimensional
variables in Fig. 1b are defined as

x ¼
2

a
x; Z ¼

2

b
y; (10)

where the ‘a’ and ‘b’ denote the length of the plate element with respect to x and y direction,
respectively. It can be seen that the primary nodal variables of the plate element are as follows

wðx; ZÞ; yxðx; ZÞ ¼
2

b

qw

qZ
; yyðx; ZÞ ¼ �

2

a

qw

qx
: (11)

Thus, we have 12 nodal dof for one plate element:

wð�1;�1Þ � w1; yxð�1;�1Þ � yx1; yyð�1;�1Þ � yy1; (12)

wð1;�1Þ � w2; yxð1;�1Þ � yx2; yyð1;�1Þ � yy2; (13)

wð1; 1Þ � w3; yxð1; 1Þ � yx3; yyð1; 1Þ � yy3; (14)

wð�1; 1Þ � w4; yxð�1; 1Þ � yx4; yyð�1; 1Þ � yy4: (15)
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Since the element has a total of 12 dof, the transverse deflection, wðx; ZÞ; can be represented by a
polynomial having 12 terms. In addition, the complete polynomial with cubic dof should be
considered for homogeneous solution of the fourth-order partial differential equation. Here, the
complete polynomials in two variables can be generated by Pascal’s triangle. However, the
complete cubic polynomial has only 10 polynomial terms. Thus, two more terms should be added
to the complete cubic polynomial. The potential candidates for such an addition are x3Z; x2Z2; and
xZ3: However, the choice of the term, x2Z2; should be excluded because the term, x2Z2; does not
satisfy the homogeneous partial differential equation (especially the second term, q4=qx2qZ2; in r4

is not zero but unity) and there is no reason to choose the unsymmetric polynomial. Therefore, the
homogeneous solution can be expressed by adding the symmetric two terms fx3Z; xZ3g to the
complete cubic polynomial:

wðx; ZÞ � pðx; ZÞTa; (16)

where the 12� 1 vector, a ¼ ½a1; a2; a3; a4; a5; a6; a7; a8; a9; a10; a11; a12

T; denotes the unknown

coefficients. The 12� 1 vector, p ¼ ½1; x; Z; x2; xZ; Z2; x3; x2Z; xZ2; Z3; x3Z; xZ3
T; denotes the poly-
nomial state variable. The next step involves expressing a in terms of the primary nodal variables
ðw1; yx1; yy1;w2; yx2; yy2;w3; yx3; yy3;w4; yx4; yy4Þ: Substituting Eq. (16) into the boundary conditions
from Eq. (12) into Eq. (15) yields

Rwe ¼ Ca; (17)

where the 12� 12 matrix, R, is a diagonal matrix whose components are R ¼ diag ½1; b=2; a=2;
1; b=2; a=2; 1; b=2; a=2; 1; b=2; a=2
: The 12� 1 vector, we ¼ ½w1; yx1; yy1;w2; yx2; yy2;w3; yx3; yy3;
w4; yx4; yy4


T; denotes the primary nodal variables at the nodes. Thus, the coefficient vector, a;
can be directly obtained by inverting the constant matrix, C.

a ¼ C�1Rwe: (18)

Substitution of Eq. (18) into Eq. (16) yields the transverse deflection, wðx; ZÞ; in terms of the
primary nodal variables.

wðx; ZÞ ¼ Nðx; ZÞTwe; (19)

where the 12� 1 matrix, Nðx; ZÞ ¼ RC�Tpðx; ZÞ is an interpolation matrix. Now, we can estimate
the transverse deflection at any point inside the plate element if we can measure all the dof. The
next step involves expressing the resultant stresses in terms of the primary nodal variables by
applying the constitutive law. Substituting Eq. (19) into the curvature vector into Eq. (9) yields

vðx; ZÞ ¼ Bðx; ZÞTwe; (20)

where the 12� 3 matrix, Bðx; ZÞ ¼ � 4
a2

q2N

qx2 � 4
b2

q2N
qZ2 � 4

ab
2 q2N
qx qZ

h i
; denotes the curvature of the

interpolation functions. The substitution of the curvature vector in Eq. (20), into the constitutive
law in Eq. (7) yields

Mðx; ZÞ ¼ D1Bðx; ZÞ
Twe: (21)

This equation represents the relationship between the resultant stresses (internal moment per
unit length) and the primary nodal variables. Thus, we are ready to estimate the internal moment
at any point inside the plate element if we measure all the dof at the four nodes. Using Eq. (21),
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the internal moments at the four nodes can be evaluated at x ¼ �1; Z ¼ �1:

M1 ¼ D1Bð�1;�1ÞTwe; (22)

M2 ¼ D1Bð1;�1ÞTwe; (23)

M3 ¼ D1Bð1; 1Þ
Twe; (24)

M4 ¼ D1Bð�1; 1ÞTwe; (25)

where the 3� 1 matrices, Mi ¼ ½Mxi;Myi;Mxyi

T; denotes the internal moments at the ith node.

Here, denoting the local node of the plate, the subscript, i, is used as an iteration index varying
from 1 to 4. For example, Mx2 ði ¼ 2Þ denotes the resulting normal moment at the node 2 in the x

direction of local coordinate system. The next step involves expressing the rotational degrees of
freedom in terms of the internal moments and the measurable degrees of freedom. Since Mxy ¼

�Myx; the twisting moment at each node yields identical equations. Therefore, a singularity

problem arises if one inverts the element stiffness matrix of all the degrees of freedom. The reason
for this problem may be traced to the fact that the considered plate element is non-conforming.
Ignoring the constraint information from twisting moments, Mxyi; we only consider the normal

moments, Mxi and Myi at the four nodes. The reason for this treatment is traced to the fact that the

contribution of the twisting moments, Mxyi; on the deformation profile of a thin plate is

insignificant compared to the normal moments, Mxi and Myi: Taking only the normal moments,

Mxi and Myi; from Eq. (22) to Eq. (25) yields

Me
¼ Hwe; (26)

where the 8� 1 vector, Me
¼ ½Mx1;My1;Mx2;My2;Mx3;My3;Mx4;My4


T; denotes the normal stress

resultants at the four nodes. The 8� 12 matrix, H; denotes the element stiffness matrix of all the
degrees of freedom, and can be decomposed with respect to the measurable and un-measurable
dof.

Me
¼ Swe

r þ Twe
t ; (27)

where the 4� 1 vector, we
t ¼ ½w1;w2;w3;w4


T; denotes the measurable transverse dof. The 8� 1

matrix, we
r ¼ ½yx1; yy1; yx2; yy2; yx3; yy3; yx4; yy4


T; denotes the un-measurable rotational dof. The

8� 8 matrix, S; denotes the partitioned element stiffness matrix of the rotational dof. The 8� 4
matrix, T; denotes the partitioned stiffness matrix of the transverse dof. The rotational dof can be
expressed by

we
r ¼ FMe

þGwe
t (28)

where the 8� 8 matrix, F ¼ S�1; denotes the element flexibility matrix of the rotational dof. The
8� 4 matrix, G ¼ �FT; denotes the relationship between the rotational dof and the transverse
dof. For simplicity, we may define a sectional second moment of area per unit length as
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I ¼ 1� h3=12: The explicit expression of Eq. (28) is as follows:

yx1

yy1

yx2

yy2

yx3

yy3

yx4

yy4

2
666666666666666664

3
777777777777777775

¼

� nb
3EI

b
3EI

0 0 0 0 � nb
6EI

b
6EI

� a
3EI

na
3EI

� a
6EI

na
6EI

0 0 0 0

0 0 � nb
3EI

b
3EI

� nb
6EI

b
6EI

0 0

a
6EI

� na
6EI

a
3EI

� na
3EI

0 0 0 0

0 0 nb
6EI

� b
6EI

nb
3EI

� b
3EI

0 0

0 0 0 0 a
3EI

� na
3EI

a
6EI

� na
6EI

nb
6EI

� b
6EI

0 0 0 0 nb
3EI

� b
3EI
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777775: ð29Þ

This equation will be referred to here as the two-dimensional slope-deflection equation for a
thin plate.
2.5. Flexural damage index equation

The objective of this section is to derive a set of damage index equations from previously
derived slope-deflection equation (29). Consider the four rectangular elements shown in Fig. 3. A
transformation from local coordinates to global coordinates is shown in Table 1. For the (e,
f+1)th element, the first row in Eq. (29) in global coordinates becomes

ye;fþ1
x1 ¼ �

nbMi�1;j
x

3EIe;fþ1
þ

bMi�1;j
y

3EIe;fþ1
�

nbMi�1;jþ1
x

6EIe;fþ1
þ

bMi�1;jþ1
y

6EIe;fþ1
þ

wi�1;jþ1 � wi�1;j

b
: (30)

Similarly, for the (e, f)th element, the seventh row of Eq. (29) in a global coordinate becomes

ye;f
x4 ¼

nbMi�1;j
x

3EIe;f
�

bMi�1;j
y

3EIe;f
þ

nbMi�1;j�1
x

6EIe;f
�

bMi�1;j�1
y

6EIe;f
þ

wi�1;j � wi�1;j�1

b
: (31)
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Fig. 3. Global coordinates of the plate elements.

Table 1

Coordinate transformation of a plate

Elements

(e, f) (e+1, f) (e, f+1) (e+1, f+1)

Mx1 Mi�1;j�1
x Mi;j�1

x Mi�1;j
x Mi;j

x

My1 Mi�1;j�1
y Mi;j�1

y Mi�1;j
y Mi;j

y

Mx2 Mi;j�1
x Miþ1;j�1

x Mi;j
x Miþ1;j

x

My2 Mi;j�1
y Miþ1;j�1

y Mi;j
y Miþ1;j

y

Mx3 Mi;j
x Miþ1;j

x Mi;jþ1
x Miþ1;jþ1

x

My3 Mi;j
y Miþ1;j

y Mi;jþ1
y Miþ1;jþ1

y

Mx4 Mi�1;j
x Mi;j

x Mi�1;jþ1
x Mi;jþ1

x

My4 Mi�1;j
y Mi;j

y Mi�1;jþ1
y Mi;jþ1

y

w1 wi�1;j�1 wi;j�1 wi�1;j wi;j

w2 wi;j�1 wiþ1;j�1 wi;j wiþ1;j

w3 wi;j wiþ1;j wi;jþ1 wiþ1;jþ1

w4 wi�1;j wi;j wi�1;jþ1 wi;jþ1
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Since the slopes for elements (e, f+1) and (e, f) are the same at the (i-1, j)th node in the y direction,
we have the continuity condition:

ye;fþ1
x1 ¼ ye;f

x4 : (32)
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After substituting Eqs. (30) and (31) into Eq. (32), the rearrangement with respect to the flexural
rigidity of each element yields the following equation for a damaged structure:

nM̄
i�1;j�1

x þ 2nM̄
i�1;j
x � M̄

i�1;j�1

y � 2M̄
i�1;j
y

� � 1

EI
e;f

þ 2nM̄
i�1;j
x þ nM̄

i�1;jþ1

x � 2M̄
i�1;j
y � M̄

i�1;jþ1

y

� � 1

EI
e;fþ1

¼ 6
w̄i�1;j�1 � 2w̄i�1;j þ w̄i�1;jþ1

b2
; ð33Þ

where the upper bar denotes damage. Using the application of the small damage assumption,
M � M̄; yields

nMi�1;j�1
x þ 2nMi�1;j

x �Mi�1;j�1
y � 2Mi�1;j

y

� � 1

EI
e;f

þ 2nMi�1;j
x þ nMi�1;jþ1

x � 2Mi�1;j
y �Mi�1;jþ1

y

� � 1

EI
e;fþ1

¼ 6
w̄i�1;j�1 � 2w̄i�1;j þ w̄i�1;jþ1

b2
: ð34Þ

Note that the right-hand side of Eq. (34) (ignoring the constant (6)) is a central difference
approximation of the curvature of the damaged structure at the (i�1, j)th node. The well known
moment–curvature relationship at the (i�1, j)th node is given by

Mi�1;j�1
x ¼ �

EIe;f

ð1� n2Þ
ðki�1;j�1

x þ nki�1;j�1
y Þ; (35)

Mi�1;j
x ¼ �

EIe;f

ð1 � n2Þ
ðki�1;j

x þ nki�1;j
y Þ; (36)

Mi�1;j�1
y ¼ �

EIe;f

ð1� n2Þ
ðki�1;j�1

y þ nki�1;j�1
x Þ; (37)

Mi�1;j
y ¼ �

EIe;f

ð1 � n2Þ
ðki�1;j

y þ nki�1;j
x Þ; (38)

Mi�1;j
x ¼ �

EIe;fþ1

ð1 � n2Þ
ðki�1;j

x þ nki�1;j
y Þ; (39)

Mi�1;jþ1
x ¼ �

EIe;fþ1

ð1� n2Þ
ðki�1;jþ1

x þ nki�1;jþ1
y Þ; (40)

Mi�1;j
y ¼ �

EIe;fþ1

ð1 � n2Þ
ðki�1;j

y þ nki�1;j
x Þ; (41)

Mi�1;jþ1
y ¼ �

EIe;fþ1

ð1� n2Þ
ðki�1;jþ1

y þ nki�1;jþ1
x Þ: (42)

If k̄i�1;j
y denotes the curvature of damaged structure at the (i�1, j)th node, the substitution

of the moment–curvature relationships from Eq. (35) to Eq. (42) into Eq. (34) yields the
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two-dimensional Flexural Damage Index Equation (FDIE) in the y direction at the i�1 lane:

ðki�1;j�1
y þ 2ki�1;j

y Þbe;f
þ ð2ki�1;j

y þ ki�1;jþ1
y Þbe;fþ1

¼ 6k̄i�1;j
y ; (43)

where

be;f
¼ EIe;f =EI

e;f
(44)

denotes a flexural damage index of the (e, f)th element. Since the slopes for elements (e, f+1) and
(e, f) are the same at the (i, j)th node in the y direction, we have the continuity condition:

ye;fþ1
x2 ¼ ye;f

x3 : (45)

The same manipulation from Eq. (30) to Eq. (42) yields the two-dimensional FDIE in the y
direction at the ith lane:

ðki;j�1
y þ 2ki;j

y Þb
e;f

þ ð2ki;j
y þ ki;jþ1

y Þbe;fþ1
¼ 6k̄i;j

y : (46)

Similarly, the slopes, yy; at the (i, j)th node to the (i, j�1)th node should be continuous. For the
plate problem, two continuity conditions are available in x direction. One continuity condition at
the (i, j)th node in the x direction is ye;f

y3 ¼ yeþ1;f
y4 ; which results in

ðki�1;j
x þ 2ki;j

x Þb
e;f

þ ð2ki;j
x þ kiþ1;j

x Þbeþ1;f
¼ 6k̄i;j

x : (47)

The other continuity condition at the (i, j�1)th node in the x direction is ye;f
y2 ¼ yeþ1;f

y1 ; which yields

ðki�1;j�1
x þ 2ki;j�1

x Þbe;f
þ ð2ki;j�1

x þ kiþ1;j�1
x Þbeþ1;f

¼ 6k̄i;j�1
x : (48)

From the derived FDIE of the plate, the following observations can be made:
1.
 the damage index equations in the two directions are uncoupled

2.
 the damage indices of two lanes in each direction are correlated

3.
 the Poisson’s ratio does not appear in the resulting equations.
For each direction, two coupled FDIEs are available. The deflection profile of those lanes can
be partitioned from the (i, j)th modal flexibility matrix (i.e. kth modal flexibility vector). It is noted
that accuracy depends on measurement spacing, since the central approximation is applied in both
sides of the damage index equation. To achieve a good curvature profile from coarse measurement
spacing, cubic Spline interpolation of the (i, j)th modal flexibility matrix is a prerequisite before
applying the central difference formula to obtain curvature profile. In addition, the assumed
density of a structure used for scaling the modal flexibility will cancel out in the two sides of the
FDIEs, because the density of structure is assumed to be a constant for small damage events.
Hence, the identified damage indices do not depend on the modal mass uncertainty, although the
modal flexibility is affected by the uncertainty about modal mass for output-only modal analysis.

Suppose that the interpolated number of measurement locations are Nx and Ny in the x and y

direction, respectively. For the (i, j)th modal flexibility matrix, the number of the coupled FDIE is
2� ðNx � 2Þ for one node lane in the x direction because the equations at two boundary nodes are
not applicable ðNx � 2Þ and two equations are available for one node lane. Since there are Ny

lanes in the y direction, the possible number of the equation is 2� ðNx � 2Þ � ðNy � 2Þ for the x
direction of the (i, j)th modal flexibility matrix. Therefore, the total possible number of the
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equation becomes 4 � ðNx � 2Þ2 � ðNy � 2Þ2 for the (i, j)th modal flexibility matrix because the
same number of equations are available in the y direction. Furthermore, the set of damage index
equations is also valid for the (i+1, j+1)th modal flexibility matrix. If the available number of
modal flexibility matrix is Nf ; the available number of FDIE is 4 � ðNx � 2Þ2 � ðNy � 2Þ2 � Nf

denoted by m. However, the number of unknown damage indices, b; is only ðNx � 1Þ � ðNy � 1Þ
denoted by n. Therefore, the sufficient number of interpolated equations is available. Thus, a set
of coupled FDIEs at each interpolated location results in an over-determined system of linear
equations:

Kb ¼ j�; (49)

where the n � 1 vector, b; denotes the damage index vector to be evaluated, and m � 1 vector, j�;
denotes a curvature vector of the damaged structure. The m � n matrix, K; represents a curvature
set for the undamaged structure.

The maximum rank of the matrix K is only n. In principle, the solutions for a set of linear
algebraic equations are identical if the rank of the set of equations is the same. Therefore, large
number of equations, m, is unnecessary if the number of nonzero singular values in the matrix K
becomes n. In practice, a few number of modal flexibility matrix, Nf ; and a set of equations in a
single direction (either the x or y direction) are enough to reach maximum rank n. Furthermore,
the choice of column in the modal flexibility matrix is arbitrary. The resulting solutions discussed
in the next following section are insignificantly altered by the choice of the modal flexibility matrix
if the rank of K is full.
2.6. Generalized pseudo-inverse solution using singular value decomposition

This section represents how to solve the previously derived over-determined FDIEs. The pre-
multiplication of KT on both sides of Eq. (49) yields a reduced set of n equations:

KTKb ¼ KTj�: (50)

If the rank of KTK is rðronÞ; the matrix cannot be inverted due to n–r rank deficiency. Thus the
number of bases resolved in the matrix, KTK; is only r. The symmetric matrix, KTK; can
be spanned by the r basis vectors ðt1; t2; . . . ; trÞ; because not only any column vector of KTK can
be spanned by its basis vector but also any row vector of KTK can be spanned by the same basis
due to symmetry:

KTK ¼ s1t1t
T
1 þ s2t2t

T
2 þ . . .srtrt

T
r : (51)

In a more convenient form, Eq. (51) can be rewritten as

KTK ¼ YXYT; (52)

where the n � r matrix, Y ¼ ½ t1 t2 � � � tr 
; is referred to a singular vector of the matrix, KTK:
The r� r diagonal matrix, X ¼ diag½s1 s2 � � � sr 
 is referred to a singular value matrix of
KTK: Then, the a pseudo-inverse solution satisfying all the Moore–Penrose conditions [17] is

C ¼ YX�1YT: (53)
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Therefore, the desired damage index can be obtained using

b ¼ YX�1YTKTjn: (54)

To obtain the solution, three tasks are necessary:
(1)
 compute KTK;

(2)
 the singular value decomposition of KTK in Eq. (52) should be performed; and

(3)
 the matrix multiplication in Eq. (54) should be performed.
Basically, the SVD technique for this least-squares problem gives a solution b that is a linear
superposition of only the r eigenmatrix of KTK corresponding to nonzero singular values as
shown in Eq. (51). The resulting solution in Eq. (54) is a unique solution to the least-squares
problem (L2 minimization) if the K has full column rank. However, if rank of K is not full, then
there are an infinite number of solutions to the least-squares problem. Let b0 denote a solution of
Eq. (50). It is desired to show that b0 is an optimal solution of Eq. (50), whether or not KTK can be
inverted. To do this, rewrite Eq. (49) as

Kðb0 þ qÞ ¼ j� þ e (55)

and show that the mean-squared error E ¼ ðeTeÞ1=2 is minimized if q is chosen to be zero. Writing
the error, e ¼ Kðb0 þ qÞ � j�; gives

E2
¼ ½Kb0 � j�
T½Kb0 � j�
 þ ðKqÞTðKqÞ � 2qTðKTKb0 � KTj�Þ (56)

but Eq. (50) requires that the final term is exactly zero. Thus,

E2
¼ ½Kb0 � j�
T½Kb0 � j�
 þ ðKqÞTðKqÞ: (57)

Only the final term in Eq. (57) depends on the vector q: Furthermore, this term is nonnegative.
Thus E ¼ ðeTeÞ1=2 is minimized by choosing q ¼ 0; showing that b0 is an optimal solution of
Eq. (50). Therefore, the residual of this L2 minimization is as follows:

E ¼ jjKb0 � jnjj2: (58)

It is emphasized that Eq. (49) has no exact solution. An optimal approximation is the best one
can do. To date, the L2 minimization is the most feasible solution. For such a least-squares
solution, the introduced pseudo-inverse solution using the SVD technique in Eq. (54) is
numerically stable and efficient whether K has full column rank or not.

In summary, the assumptions made in the process of development of the FDIE are as follows:
(1)
 for a statically determinate or indeterminate linear elastic thin plate, a small damage event will
have an insignificant effect on the internal forces.
(2)
 the mass density of a structure has not changed during the small damage event.

(3)
 the transverse dofs in a few of lower mode shapes before and after the small damage event are

measurable through existing modal testing technique.

(4)
 the static deflection profile due to a unit load at the (i, j)th node is accurately approximated at

the discrete measurement position using the (i, j)th modal flexibility matrix.

(5)
 the curvature of the measured (i, j)th modal flexibility matrix, with reasonable accuracy, can

be approximated by a finite difference formula in conjunction with a cubic Spline

interpolation.
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2.7. Overall solution procedures
Based on previous results, the overall damage detection scheme can be achieved using the five
steps described below.

Step 1: Using the measurements of modal parameters for the undamaged condition and the
damaged condition of a structure, estimate the (i, j)th undamaged and damaged modal flexibility
matrix using Eq. (3) or Eq. (4).

Step 2: Interpolate the (i, j)th modal flexibility matrix using cubic Spline function for coarse
sensor interval.

Step 3: Using the previously interpolated deflection profiles (a set of the (i, j)th modal flexibility
matrix), estimate the curvature profiles of the undamaged and the damaged structures using the
central difference formula.

Step 4: Using the estimated set of curvature profiles of both the undamaged structure and the
damaged structure, construct the over-determined linear matrix equation, Kb ¼ j�; (Eq. (49)).

Step 5: Use the pseudo-inverse technique to solve for the damage indices, b; in Eq. (54).
3. Numerical example

In order to examine the performance of a set of two–dimensional flexural damage index
equations, the simply supported plate-like structure in Fig. 4 is considered. The structure
represents a model of a simply supported reinforced concrete slab bridge with the thickness of
0.15m, the Youngs’ modulus of 28.6Gpa, the density of 2400 kg, and the Poisson’s ratio of 0.15.
The damage location is indicated by the gray area in Fig. 4. The simulated location of damage is
Sensor Location : 20@0.8m=16.0m 

Sensor 
Location 
10@1.0m 
=10.0m 

S.S S.S

Y 

X 

7.8m 7.8m 0.4m 

5.0m 

Damaged 
Region  
(0.9EI) 

Fig. 4. Damage detection scenario of a simply supported plate.
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most probable, because the live loads cause the maximum moments and deflection in such a
region for the particular lane. The severity of damage is simulated by a 10% uniform reduction of
Young’s modulus. Thus, the exact damage index is 1.1111 in the damaged region. It is assumed
that the 21� 10 sensors are placed with 0.8m and 1.0m uniform spacing for x and y directions,
respectively. Assuming that only the transverse degrees of freedom are measured at each sensor,
the first six natural frequencies and displacement-normalized mode shapes are extracted for the
undamaged structure and the damaged structure by means of output-only modal testing. Note
that these incomplete measurement scenarios are often encountered in practice. The measured
natural frequencies are shown in Table 2. It is noted that the changes in natural frequencies are
insignificant due to simulated damage. The measured modes consist of the three normal bending
modes and the three twisting modes. From the measured six mode shapes of the structure, modal
mass for each mode is approximated by Eq. (5). For a known density of the plate, the trapezoidal
integration rule is used twice for each direction after the Cubic Spline interpolation of 0.02m
uniform interval for both x and y directions. As shown in Table 3, the error of modal mass
approximation is considered to be negligible.

In the x direction, the first six modes are the flexural modes because the plate is simply
supported. However, in the y direction, the boundary condition of the plate is free at both sides.
Therefore, the rigid-body modes are involved in all the measured modes except the fifth mode in
the y direction. Consequently, the y direction may be inadequate for the application of the FDIE.
Based on these reasons, only the x direction is considered in the following. Therefore, there are
Table 2

Natural frequency of the two span continuous plate

Mode Undamaged (Hz) Damaged (Hz) Change rate (%) Remark (Mode)

1 0.9205 0.9177 0.2977 Bending

2 2.3017 2.3006 0.0478 Twisting

3 3.6923 3.6922 0.0027 Bending

4 5.5749 5.5663 0.1543 Twisting

5 6.9955 6.9813 0.2030 Twisting

6 8.3150 8.2906 0.2934 Bending

Table 3

Modal mass approximation of the simply supported plate

Mode Undamaged Damaged

Approx. (kg) Exact (kg) Error (%) Approx. (kg) Exact (kg) Error (%)

1 27 186 27 186 �0.0014 26 995 26 995 �0.0016

2 9964 9963 0.0108 9948 9948 0.0072

3 25 840 25 842 �0.0075 25 812 25 814 �0.0067

4 10 602 10 598 0.0346 10 569 10 566 0.0294

5 7542 7549 �0.0844 7506 7512 �0.0861

6 25 118 25 121 �0.0137 24 041 24 045 �0.0157
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total nine element lanes and 10 node lanes in the y direction. Furthermore, the damage indices can
be independently identified for each element lane. Using the previously estimated modal mass, a
set of modal flexibility matrix due to a unit load at x ¼ 4; 8, and 12m is computed ðNf ¼ 3Þ for
each element lane. Here, the y coordinates of the unit load are dependent on the considered node
lane. Recall that the location of a unit load is arbitrary. Using the Cubic Spline interpolation of
0.02m uniform interval, the set of modal flexibility matrix is interpolated at Nx ¼ 801 nodes in the
x direction. No interpolation is conducted ðNy ¼ 10Þ in the y direction. Then, the 800 interpolated
elements can be formed for each element lanes. To identify the 800 unknowns for each element
lane, only the adjacent two node lanes are necessary to construct the coupled FDIE. Thus, the
number of the coupled FDIE is 1598 (=799� 2) for one element lane for a specific modal
flexibility matrix. Next, the corresponding curvature surface in the x direction is estimated using
the central difference formula. Using the estimated curvature profiles for the undamaged and
damaged plates, the 4794 (=1598� 3 modal flexibilities) FDIEs are constructed to identify the
800 unknowns for each element lane. To construct the coupled FDIE in the x direction, Eqs. (47)
and (48) are used to construct the over-determined linear matrix Eq. (49) for each element lane.
The next involves solving the over-determined equation using the pseudo-inverse technique
presented in Eq. (54). Identical procedures are repeated for the other element lanes. The estimated
damage indices at the only sensor locations are shown in Fig. 5. The estimated damaged location
can correctly be identified. Furthermore, the average value of the estimated damage indices in the
damage region is b ¼ 1:1192: Thus, it can be concluded that the flexural rigidity is reduced to
89.4% (1/1.1192) at the damaged region. It is noted that the percent error of this severity
estimation is only �0.7%.
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Fig. 5. Estimated damage index by the FDIE.
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For the purpose of comparison study, the DI method by Choi and Stubbs [9] and the MSC
method by Wahab and Roeck [7] are applied to the structure with the same damage scenario. For
the DI method, the damage index for the (e, f)th element in the ith mode is defined as

be;f
i ¼

De;f

D̄
e;f

; (59)

where De;f and D̄
e;f

denote the flexural rigidity of the (e, f)th undamaged element and damaged
element, respectively. The damage index is numerically estimated by the following:

be;f
i ¼

f̄
e;f
i Ui þ 1

f
e;f
i Ū i þ 1

(60)

with

f
e;f
i ¼

q2fi

qx2
þ

q2fi

qy2

� �2

� 2ð1 � nÞ
q2fi

qx2

q2fi

qy2
�

q2fi

qx qy

� �2
" #

: (61)

The modal strain energy in the ith mode, Ui; is obtained by

Ui ¼
1

2

ZZ
A

Df
e;f
i dx dy: (62)

A new indicator, the normalized damage index for the ith mode, is expressed using the computed
damage indices:

z
e;f
i ¼

be;f
i � mb
sb

; (63)

where mb and sb represent the mean and the standard deviation of be;f
i ’s, respectively. When

several modes are used, the normalized damage index obtained for each mode is superposed.
Using the 0.02m uniform interval for both x and y directions, the normalized damage index
shown in Fig. 6 is numerically estimated by superposing the six mode results. The peaks near the
simulated damage region are clearly identified. To estimate the severity of damage, a sensitivity
algorithm that is a model-based approach can further be applied. However, unlike the proposed
method, the estimation of severity of damage is not possible from the direct inspection of the
estimated normalized damage index.

For the MSC method, the application to a plate is not found in technical literature yet.
However, the plate considered herein can be modeled as a simple beam with a wide rectangular
cross-section. Therefore, the only three bending modes (first, third, and sixth modes) are
considered in the MSC method. For each mode, the absolute differences of curvature in the x
direction are shown in Figs. 7–9, respectively. In the first mode, the absolute difference shows a
clear peak near the damaged region. However, two peaks locate at the wrong place in the 3rd
mode. The reason is that the damaged region exists at the nodal point of the third mode. This
degeneracy is called the singularity problem of the MSC method. In the sixth mode, absolute
curvature difference shows peaks not only at the damaged region, but also at the extremes of
original mode shapes. Using this three bending modes ðn ¼ 3Þ; the curvature damage factor
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Fig. 6. Normalized damage index by the DI method.
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(CDF) shown in Fig. 10 is computed by

CFD ¼
1

n

Xn

i¼1

d2fi

dx2
�

d2f̄i

dx2

����
����: (64)

Since the absolute curvature difference in the sixth mode is dominant in magnitude, the
patterns of the CDF are similar to those of Fig. 9. This result clearly shows the mode selection
problem stated earlier. Although the damage detection results of the first mode are clearer
than those of sixth mode, the representative damage detection results (CDF) are governed by the
sixth mode. Although the MSC method successfully locates the damaged region, the severity
of damage relative to the undamaged plate could not be estimated unlike the proposed
method. Based on above results, it is seen that the DI method and MSC method is capable of
locating damage, but the severity estimation cannot be achieved from the direct inspection of the
estimated damage index. However, the proposed method is able to locate and size damage
simultaneously.

To investigate the applicability of the proposed method with real conditions of measurement,
two models of measurement noise are considered: one is for tilt of accelerometers caused by an
inaccurate installment; the other is for random signal noise in time series. For the tilt noise, it is
assumed that the accelerometers cannot be installed exactly perpendicular to the surface of the
plate and their biased angles are randomly distributed from �51 to +51 in the y direction. The tilt
noise is numerically considered by taking the cosine function for such a range of random angle
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Fig. 7. Absolute curvature difference in the first mode by the MSC method.
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Fig. 8. Absolute curvature difference in the third mode by the MSC method.
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Fig. 10. Curvature damage factor by the MSC method.
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and by multiplying the original mode shapes. It is also assumed that the accelerometers are not
moved before and after damage. The same FDIE solution procedures are conducted, and the
identified damage indices at the sensor locations are shown in Fig. 11. The location of damage is
correctly identified, but the errors in the severity estimation increase to 1.76%.

The vibration-based damage detection methods commonly assume that measured modal
parameters are noise-free. This requirement could be achieved by an accurate modal test
and analysis with the aid of an average technique. Although modal parameter extraction is
beyond the scope of this study, the sensitivity of the proposed method to random noise is simply
checked out. Using the first 10 lower modes, a set of acceleration responses due to unit impulses is
simulated by a state-space simulation. Here, total simulation time is 60 s and sampling frequency
is 100Hz. For each mode, a 1.5% damping ratio is used. A random noise whose maximum
magnitude is 0.1% of the maximum magnitude of overall acceleration responses is added to the
responses. The TDD technique, an output-only modal analysis method by Kim et al. [18], is
applied to the noise-contaminated signals in order to extract the 21� 10 mode shapes. For the
demonstration purpose of the noise effects, the averaging process supposed to be followed in the
modal analysis method is omitted. For the undamaged structure, the Modal Assurance Criterion
(MAC) values between exact mode shapes and identified mode shapes are 1.0000, 1.0000, 0.9999,
0.9997, 0.9995, and 0.9997 for the first six lower modes, respectively. Using such noise-
contaminated mode shapes, the same solution process is applied. As shown in Fig. 12, the
identified damage indices peak near the damaged region. However, many fictitious peaks are
randomly distributed due to the simulated noise. Hence, if the noise on mode shapes is serious, the
peaks at the damaged region could not be distinguished from the distributed fictitious peaks.
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Fig. 11. Estimated damage index with tilt noise.
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Fig. 12. Estimated damage index with random signal noise.
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Fig. 13. Estimated damage index with a larger sensor spacing.
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A detailed quantitative study for the noise sensitivity in real conditions remains as a problem to be
solved.

To investigate the effect of sensor spacing, two case studies of relatively coarse sensor spacing
are examined. First, the 11� 6 sensors are placed with 1.6m and 2.0m uniform spacing for the x

and y directions, respectively. The exact coordinates of the sensors are x=0, 1.6, 3.2, 4.8, 6.4, 8.0,
9.6, 11.2, 12.8, 14.4, 16.0m and y=0.0, 2.0, 4.0, 6.0, 8.0, 10.0m. For the same damage scenario,
the identical FDIE solution procedures are repeated. The identified damage indices are illustrated
in Fig. 13. Although the localization of damage is successful, the errors in the severity estimation
increase to 4.2% near the damaged region. Second, the 12� 6 sensors are placed at x=0.0, 0.8,
2.4, 4.0, 5.6, 7.2, 8.8, 10.4, 12.0, 13.6, 15.2, 16.0m and y=0.0, 2.0, 4.0, 6.0, 8.0, 10.0m. Note that
all the sensors are outside of the damaged region in this case study. The identical FDIE solution
procedure with the previous case study is conducted, and the resulting damage indices at the
sensor locations are shown in Fig. 14. The locations of damage are clearly identifiable, but the
errors in the severity estimation become worse (about 7.65%). The main reason of this degeneracy
is traced to the interpolation of the measured mode shapes. For the first case of the coarse sensor
spacing, the eight sensor ðx ¼ 8:0mÞ in the x direction occasionally locates at the damaged region.
This is the reason that the interpolation error of the first case is relatively smaller than those of the
second case.
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Fig. 14. Estimated damage index when sensors locate outside of the damaged region.
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4. Summary and conclusions

The objective of this study is to extend the MSC method and the DI method by resolving some
deficiencies of those methods. In order to achieve the goal, the small damage assumption is
defined, and the FDIEs for a plate-like structure have been derived from the two-dimensional
slop-deflection equations. Next, an efficient solution procedure has been introduced to solve a set
of the FDIEs of a structure, and the overall procedures to localize and size damage using
incomplete modal data have been summarized. Finally, the performance of the proposed method
has been numerically evaluated for a simply supported plate structure with an incomplete
measurement scenario.

It is emphasized that the proposed method does not suffer from the mode selection problem
occurred in the MSC method and the DI method. The reason is due to the fact that the proposed
method utilizes modal flexibility that is a rational way to combine modes. Furthermore, the
singularity problem near the inflection points of the MSC method and the DI method is
completely resolved by solving a set of linear algebraic equations, so called the FDIE. A close
inspection of the derived FDIE shows that the damage and the curvature of flexibility have a
strong relationship. This result is very consistent with the findings of the MSC method and the DI
method.

Although the proposed technique has many features comparing to the MSC method and the DI
method, there exists at least one deficiency that should be overcome near future. The proposed
method requires a fine sensor interval for an accurate estimation of severity of damage. This
deficiency is due to the approximation of the curvature of modal flexibility just like the MSC
method and the DI method.
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